服務熱線
021-69153530
摘要:規模日益增長的電動汽車和可再生能源帶來的不確定性給配電網的安全運營帶來了嚴(yan) 峻挑戰。為(wei) 綜合考慮多重不確定性、平衡運營成本與(yu) 係統可靠性,首先,提出一種基於(yu) 分布魯棒聯合機會(hui) 約束的電動汽車-配電網充放電調度模型。該模型將節點電壓、支路功率、備用需求等通過聯合機會(hui) 約束建模,可以直觀地管理係統整體(ti) 的可靠性。然後,為(wei) 求解該模型,基於(yu) Bonferroni近似方法將聯合機會(hui) 約束問題轉化為(wei) 混合整數二次規劃模型,其中,風險等級也被視為(wei) 決(jue) 策變量。隨後,在不同電力係統上驗證了所提模型的有效性和可擴展性。結果表明,所提模型克服了經典的隨機優(you) 化和魯棒優(you) 化存在的問題,能夠有效平衡成本和可靠性,計算效率高、可擴展性好,較Bonferroni近似方法降低約6.5%的成本。
關(guan) 鍵詞:電動汽車;配電網;Bonferroni近似方法;不確定性;風險管理
一、引言
截至2023年6月底,中國電動汽車(EV)保有量已經超過1200萬(wan) 輛,大規模接入電網的EV若不進行合理調度,將對電網安全運營帶來嚴(yan) 峻挑戰。同時,EV作為(wei) 一種具有時空和容量高度靈活性的負荷,具有很大的調節潛力,可以作為(wei) 靈活性資源為(wei) 配電網提供輔助服務並帶來安全效益,增強電力係統管控不確定性風險的能力。
單輛EV調節能力有限,無法參與(yu) 電力市場EV聚合商作為(wei) EV與(yu) 配電網的中間體(ti) ,能夠管理EV充放電和電力市場交易,與(yu) 配電網進行互動。通過建立EV聚合模型,便於(yu) 從(cong) 整體(ti) 角度分析EV集群的可調節潛力,減少模型中的變量個(ge) 數,降低模型複雜度與(yu) EV數量的關(guan) 聯。EV接入和離開充電站的時間、充電需求、滲透率日益增加的光伏/風電等可再生能源、電網中的非靈活性負荷等均存在著不確定性,如何處理不確定性是EV並網充放電調度研究中的關(guan) 鍵性問題。
二、 算法對比分析
現有處理不確定性的經典方法包括隨機優(you) 化(SO)、魯棒優(you) 化(RO)、機會(hui) 約束舊等。其中,SO一般以目標函數的數學期望為(wei) 目標,考慮了EV到達/離開時間、非靈活性負荷、市場價(jia) 格的隨機性,配電網和EV聚合商利益的期望值。然而,SO往往需要場景驅動,複雜度與(yu) 場景的數量高度相關(guan) ,場景過少可能導致對隨機性的刻畫不準確,場景過多則帶來很大的計算負擔,與(yu) SO不同,RO關(guan) 注可能出現的最壞情況,考慮隨機的可再生能源出力和負荷,通過強對偶理論和列與(yu) 約束生成算法來轉化和求解兩(liang) 階段RO問題。與(yu) SO問題相比,RO複雜度與(yu) 場景的個(ge) 數關(guan) 聯較低,但由於(yu) 最壞的情況在實際中可能以很低的概率出現,這種方法可能過於(yu) 保守。此外,由於(yu) SO和RO均未將風險係數考慮在建模中,無法直觀地管理係統風險。
三、 算法處理方法
為(wei) 解決(jue) SO和RO方法存在的問題並平衡經濟成本與(yu) 係統安全,分布式魯棒機會(hui) 約束(distributionally robust chance constraint,DRCC)模型受到越來越多的關(guan) 注。通過建立DRCC模型處理了非靈活性負荷、可再生能源出力、市場價(jia) 格等不確定性因素。采用機會(hui) 約束限製電壓、功率等範圍以確保配電網在一定概率下安全運行。采用DRCC模型對EV的可調空間進行建模。然而,上述研究中的多個(ge) 機會(hui) 約束是獨立的,忽視了機會(hui) 約束之間可能存在的關(guan) 聯,同時在單一機會(hui) 約束的風險參數選擇上具有一定主觀性,對每條約束取相同的風險等級,為(wei) 此,有必要聯合考慮機會(hui) 約束,將問題建模為(wei) 分布式魯棒聯合機會(hui) 約束(distributionally robust jointchance constraint,DRJCC)模型。然而,DRJCC模型是隱式的,難以求解,經典的Bonferroni 近似Bonferroni approximation,BA)方法直接將聯合約束轉化為(wei) 獨立約束,並根據Bonferroni不等式預先分配獨立約束的風險等級,這可能導致模型過於(yu) 保守為(wei) 降低模型保守性,為(wei) 此提出 Bonferroni 近似(optimized Bonferroni approximation,OBA)方法用於(yu) 近似機會(hui) 約束問題,這種方法在滿足Bonferroni不等式的前提下將獨立約束的風險等級也視為(wei) 變量進行優(you) 化,可以降低模型的保守性。進一步地,將 OBA方法求解DRJCC問題應用到考慮不確定性的潮流問題中,提出了基於(yu) 多項式展開近似、連續凸近似等方法,並對比了不同近似方法的表現,盡管對采用 OBA方法求解的DRICC模型已有了初步的研究,但其應用在大規模EV接人配電網的調度研究中尚且罕見。為(wei) 此,本文在大規模EV接人配電網的調度問題中建立了 DRJCC模型,聯合考慮了節點電壓、線路功率、備用需求,並采用OBA的方法求解。與(yu) 相關(guan) 研究相比,本文的主要貢獻如下:
1)為(wei) 高效處理多重隨機性下EV接入配電網的調度問題,建立了DRJCC模型,算例表明所提模型緩解了 SO 模型求解時間長、RO的模型過於(yu) 保守等問題。
2)為(wei) 處理難以求解的聯合機會(hui) 約束模型,提出一種 OBA方法,將風險等級也視為(wei) 決(jue) 策變量,將問題轉化成混合整數二次規劃模型,降低了模型的保守性,與(yu) 預先確定風險等級的方法相比,在滿足可靠度要求的前提下降低約6.5%的成本。
3)所提模型將節點電壓、支路功率、備用需求等綜合考慮作為(wei) 聯合機會(hui) 約束建模,能夠通過設定係統整體(ti) 風險等級參數以直觀管理係統風險,並便於(yu) 平衡係統運營成本和可靠度。
三、 解決(jue) 方案
圖1 有序充電管理係統示意圖
圖2平台結構圖
有序充電管理係統由預測算法、能量管理策略、有序充電策略和充電樁運營管理係統等構成。預測算法包括光伏、風力發電預測和負荷預測,是利用曆史數據對未來 24 小時至72小時的風力、光伏發電和負荷需求進行預測,主要目的是為(wei) 能量管理係統和有序充電策略提供未來時間的可用負荷容量和能量管理策略。通過對儲(chu) 能裝置的充放電調控和引導充電需求,實現負荷的削峰填穀,提高電網運行穩定性,降低充電成本,通過以上算法和軟件構成的一體(ti) 化充電服務體(ti) 係來提高運營競爭(zheng) 力。
四、安科瑞有序充電雲(yun) 平台具體(ti) 的功能
平台除了對充電樁的監控外,還對充電站的光伏發電係統、儲(chu) 能係統以及供電係統進行集中監控和統一協調管理,提高充電站的運行可靠性,降低運營成本,平台係統及虛擬電廠的架構如圖3、圖4所示。
圖3 充電樁運營管理平台係統架構
圖4 虛擬電廠與(yu) 電力交易結構圖
能源規劃:采用魯棒優(you) 化方法進行優(you) 化配置,提供經濟的容量規劃方案。
圖5 虛能源規劃示意圖
優(you) 化調度:提高新能源消納
圖6 優(you) 化調度示意圖
儲(chu) 能峰穀套利:不僅(jin) 可以平衡電網負荷,還可以節省電費,增加收益
圖7 優(you) 化儲(chu) 能峰穀套利調度示意圖
削峰填穀:配合儲(chu) 能設備、低充高放
圖8 削峰填穀示意圖
需量控製:能量儲(chu) 存、充放電功率跟蹤
圖8 削峰填穀示意圖
柔性擴容:短期用電功率大於(yu) 變壓器容量時,儲(chu) 能快速放電,滿足負載用能要求
圖9 柔性擴容示意圖
五、產(chan) 品選型
安科瑞為(wei) 廣大用戶提供慢充和快充兩(liang) 種充電方式,便攜式、壁掛式、落地式等多種類型的充電樁,包含智能7kw/21kw交流充電樁,30kw直流充電樁,60kw/80kw/120kw/180kw直流一體(ti) 式充電樁來滿足新能源汽車行業(ye) 快速、經濟、智能運營管理的市場需求。實現對動力電池快速、高效、安全、合理的電量補給,同時為(wei) 提高公共充電樁的效率和實用性,具有有智能監測:充電樁智能控製器對充電樁具備測量、控製與(yu) 保護的功能;智能計量:輸出配置智能電能表,進行充電計量,具備完善的通信功能;雲(yun) 平台:具備連接雲(yun) 平台的功能,可以實現實時監控,財務報表分析等等;遠程升級:具備完善的通訊功能,可遠程對設備軟件進行升級;保護功能:具備防雷保護、過載保護、短路保護,漏電保護和接地保護等功能;適配車型:滿足國標充電接口,適配所有符合國標的電動汽車,適應不同車型的不同功率。下麵是具體(ti) 產(chan) 品的型號和技術參數。
產(chan) 品圖 | 名稱 | 技術參數 |
AEV200-AC007D | 額定功率:7kW 輸出電壓:AV220V 充電槍:單槍 充電操作:掃碼/刷卡 防護等級:IP65 通訊方式:4G、Wifi 安裝方式:立柱式/壁掛式 | |
AEV210-AC007D | 額定功率:7kW 輸出電壓:AV220V 充電槍:單槍 人機交互:3.5寸顯示屏 充電操作:掃碼/刷卡 防護等級:IP54 通訊方式:4G、Wifi 安裝方式:立柱式/壁掛式 | |
AEV300-AC021D | 額定功率:21kW 輸出電壓:AV220V 充電槍:單槍 人機交互:3.5寸顯示屏 充電操作:掃碼/刷卡 防護等級:IP54 通訊方式:4G、Wifi 安裝方式:立柱式/壁掛式 | |
AEV200-DC030D | 額定功率:30kW 輸出電壓:DC200V-750V 充電槍:單槍 人機交互:7寸觸摸屏 充電操作:掃碼/刷卡 防護等級:IP54 通訊方式:以太網、4G(二選一) | |
AEV200-DC060D/ AEV200-DC080D | 額定功率:60kW/80kW 輸出電壓:DC200V-1000V 充電槍:單槍 人機交互:7寸觸摸屏 充電操作:掃碼/刷卡 防護等級:IP54 通訊方式:以太網、4G(二選一) | |
AEV200-DC060S/ AEV200-DC080S | 額定功率:60kW/80kW 輸出電壓:DC200V-1000V 充電槍:雙槍 人機交互:7寸觸摸屏 充電操作:掃碼/刷卡 防護等級:IP54 通訊方式:以太網、4G(二選一) | |
AEV200-DC120S/ AEV200-DC180S | 額定功率:120kW/180kW 輸出電壓:DC200V-1000V 充電槍:雙槍 人機交互:7寸觸摸屏 充電操作:掃碼/刷卡 防護等級:IP54 通訊方式:以太網、4G(二選一) | |
AEV200-DC240M4/ AEV200-DC480M8/ AEV200-DC720M12 | 額定功率:240kW/480kW/720kw 輸出電壓:DC150V-1000V 充電終端支持:常規單雙槍終端 防護等級:IP54 | |
AEV200-DC250AD | 最大輸出:250A 1個(ge) 充電接口; 支持掃碼、刷卡支付; 4G、以太網通訊(二選一) | |
AEV200-DC250AS | 最大輸出:250A 2個(ge) 充電接口; 支持掃碼、刷卡支付; 4G、以太網通訊(二選一) |
5.2儲(chu) 能產(chan) 品
5.3監測、保護、治理的相關(guan) 產(chan) 品
六、應用案例
案例一:江陰某光儲(chu) 充微電網項目
案例二:江陰某研究院微電網項目
七、結論
本文將考慮輔助市場的EV-配電網充放電調度問題建模為(wei) DRJCC模型,以平衡運營成本和可靠性並克服經典SO和RO的缺點。然後,基於(yu) OBA方法,將無法求解的聯合機會(hui) 約束轉化為(wei) 混合整數二次規劃模型求解,與(yu) BA方法不同的是,風險等級也被視為(wei) 決(jue) 策變量進行優(you) 化,降低了模型的保守性。最後,通過算例驗證了模型平衡成本和風險的有效性、對EV數量和更大電力係統的可擴展性。本文研究未考慮擬合得到的隨機變量概率分布與(yu) 真實分布之間可能存在的偏差。未來,將進一步研究基於(yu) 模糊概率分布的分布式魯棒優(you) 化模型,並增加對光伏、風電、負荷、EV充電行為(wei) 等多維不確定因素之間的相關(guan) 性研究。
安科瑞侯文莉
2025 版權所有 © 18luck新官网登录 sitemap.xml 技術支持:
地址:上海市嘉定區育綠路253號2幢4層 傳(chuan) 真: 郵件:540643891@qq.com
電瓶車充電樁、電動汽車充電樁禁止非法改裝!
關(guan) 注我們(men)