服務熱線

13651854162
網站導航
主營產品:
  • 遠程控製智能電表,諧波電能表
技術文章
當前位置:主頁 > 技術文章 > 淺談FFT算法在電機保護係統中的應用分析

淺談FFT算法在電機保護係統中的應用分析

更新時間:2021-12-20 點擊次數:737

侯文莉

安科瑞電氣股份有限公司 上海嘉定 201801

 

摘要:微型電機具有體(ti) 積小、重量輕、便於(yu) 控製等優(you) 點,已廣泛應用於(yu) 生產(chan) 消費等領域.為(wei) 保證微型電機的性能滿足使用要求,實時監測是的環節.在傳(chuan) 統的電機保護中,信號處理采用的都是模擬濾波器.與(yu) 模擬濾波器相比,數字濾波器具有更高的靈活性和穩定性。本文提出一種基於(yu) FFT算法的電壓信號處理方式,利用FFT可以由輸入序列直接計算出輸入信號的直流分量以及各次諧波的幅值和相位的特點,大大簡化了諧波分量的計算。

 

關(guan) 鍵詞:FFT;電機保護;數字信號處理

 

0引言

FFT是一種DFT的高效算法,基本上可分為(wei) 時間抽取法和頻率抽取法,把長序列分為(wei) 短序列,可在時域或頻域進行。常用的時域抽取方法是按奇偶將長序列不斷變為(wei) 短序列,輸出序列為(wei) 順序序列,而一般的時間抽取法和頻率抽取法處理的長度隻有N=2M。本文主要研究FFT算法在18luck新客户端產(chan) 品中的應用效果,不僅(jin) 能夠有效去除諧波幹擾,還可以有選擇地單獨計算諧波分量,充分利用了FFT的原位性.

 

1傅裏葉算法的原理

快速傅裏葉變換(FFT)是離散傅裏葉變換(DFT)的一種快速算法,從(cong) 物理意義(yi) 上來看,DFT將時域的數字信號變換成頻域的離散信號,根據變換之後的結果可知時域數字信號在不同頻率上的幅值,確定時域信號主要分布在哪些頻段上;從(cong) 數學角度來看,ar是將數字信號變換到幾個(ge) 正交的坐標係中。圖1為(wei) 時域數據的DFT變換。

DFT是連續傅裏葉變換的離散形式。模擬信號x(t)的連續傅裏葉變換可表示為(wei) :


x(t)經抽樣後變為(wei) x(nT),:T為(wei) 抽樣周期。設x(n)為(wei) N點有限長序列,其DFT為(wei) :

由式(2)可以看出計算所有x(k)大約需要N2次乘法和N(N-1)次加法,運算過程非常複雜。

一般來說,由於(yu) x(n)和WNnk都是複數,X(k)也是複數,那麽(me) 複數運算實際上可以通過實數運算來完成,式(2)則可以寫(xie) 成:

仔細觀察DFT的運算,利用係數WNn的以下固有特性,可以減小DFT的運算量。

WNn的對稱性為(wei) :

WNn的周期性為(wei) :

由此可以得到:

利用這些特性,DFT運算中的有些項就可以合並。由於(yu) DFT的運算量與(yu) N2成正比,所以N越小計算量越小。

 

2 FFT算法的應用

離散傅裏葉變換(DFT)和快速傅裏葉變換(FFT)是同種變換。FFT隻不過是利用DFT係數WNn的對稱性和周期性,可以將長序列的DFT分解為(wei) 短序列的DFT,然後再按一定的規則進行合並,從(cong) 而得到整個(ge) DFT。本文根據電機工作時產(chan) 生的電壓、電流波形的差異來區分正常電機和故障電機。要找出這種差異,首先需要獲取正常電機和不良電機的電流、電壓信號數據。由於(yu) 電流信號難以采集,所以首先通過I/V轉換電路將電流信號轉換為(wei) 電壓信號,如圖2所示。

電流信號轉換為(wei) 電壓信號之後,信號的采集、分析和處理過程如圖3所示。

假設采集到的電機工作時的信號為(wei) 一周期性信號,即輸入的信號中除基波外,隻包含恒定的直流分量和各種整次諧波分量。此時電流輸入信號可以表示為(wei) :

其中,a0akbk為(wei) 傅裏葉係數

由數學定理可知周期函數可展開為(wei) 傅裏葉級數:

其中(7)和式(11)的各係數之間還有以下關(guan) 係:

當采集到電壓信號後,Akmφk分別對應電壓的k次諧波的幅值Akmk次諧波的相位φ,由此可以計算出電壓的k次諧波的有效值。得出係數之間的關(guan) 係後還可以得到k次諧波的有功功率Pk、無功功率Qk和視在功率Sk.

同時可以計算出k次諧波的電壓含有率HRU

同理得到電壓的諧波總失真度THDU

3基2時間抽取FFT算法的分析

設序列x[k]的長度為(wei) 用N=2M為(wei) 正整數,M為(wei) 正整數,長度不滿足該條件,可通過補0的方法使序列x[k]滿足該條件。對長度為(wei) N的序列x[k]進行時間抽取,將其分解為(wei) 兩(liang) 個(ge)

 

長度為(wei) N/2點的序列 ,分別為(wei) :

其中,x1[k]是序列中偶數點構成的序列,x2[k]是序列中奇數點構成的序列。

x[k]進行DFT得:

由於(yu) 旋轉因子WNn擁有式(4)、式(5)和式(6)的特性,因此:

綜上所述,可以表示為(wei) :

將式(22)和式(23)合並即可得到序列x[k]的DFT。蝶形計算結構如圖4所示。

2時間抽取FFT運算流圖(N=8)如圖5所示。

4仿真結果

實際中常常會(hui) 遇到要求兩(liang) 個(ge) 序列的線性卷積,如一個(ge) 信號序列x(n)通過FIR濾波器時,其輸出y(n)應是x(h)與(yu) h(n)的卷積:

有限長序列x(n)與(yu) h(n)的卷積結果y(n)也是一個(ge) 有限長序列。假設x(n)和h(n)的長度分別為(wei) N1和N2,則y(n)的長度為(wei) N1+N2-1。若通過補0使x(n)和h(n)都加長到N點,就可以用圓周卷積計算線性卷積。這樣得到用FFT運算來求y(n)值(快速卷積)的步驟如下。

(1) 對序列x(n)和h(n)補0至長為(wei) N,使得N≥N1+N2-1,,並且N=2M(M為(wei) 整數),即:

(2)用FFT計算x(n)與(yu) h(n)的離散傅裏葉變換:

(3)計算XQ=X(QH(Q。

(4)用IFFT計算Y(k)的離散傅裏葉反變換得:

例如,運用FFT實現序列x(n)=sin(0.4n),1≤n≤15與(yu) 序列y(n)=0.9n,1≤n≤20之間的快速卷積,並測試直接卷積與(yu) 快速卷積的時間,得到的卷積結果如圖6所示。其中,運用快速卷積的時間為(wei) 0.000033秒,運用直接卷積的時間為(wei) 0.000049秒。很明顯,運用FFT的快速卷積運算速度上優(you) 於(yu) 宜接卷積。

5.安科瑞智能電動機保護器介紹

5.1產(chan) 品介紹

智能電動機保護器(以下簡稱保護器),采用單片機技術,具有抗幹擾能力強、工作穩定可靠、數字化、智能化、網絡化等特點。保護器能對電動機運行過程中出現的過載、斷相、不平衡、欠載、接地/漏電、堵轉、阻塞、外部故障等多種情況進行保護,並設有SOE故障事件記錄功能,方便現場維護人員查找故障原因。適用於(yu) 煤礦、石化、冶煉、電力、以及民用建築等領域。本保護器具有RS485遠程通訊接口,DC4-20mA模擬量輸出,方便與(yu) PLC、PC等控製機組成網絡係統。實現電動機運行的遠程監控。

5.2技術參數

5.2.1數字式電動機保護器

5.2.2模塊式電動機保護器

5.3產(chan) 品選型


6 結束語

本文研究了一種由DFT優(you) 化演變而來的FFT算法與(yu) 傳(chuan) 統方法相比,該算法具有高效運算效率,為(wei) 信號處理提供了良好的條件仿真結果證明,該算法能夠減少信號處理所需的時間,可以直接計算出電壓信號的直流分量以及各次諧波的幅值和相位,便於(yu) 分析諧波的分量有利於(yu) 繼電器及時做出斷電的決(jue) 策

 

參考文獻

[1] 李加升,熊潔,陽磊.基於(yu) FFT算法的電流信號檢測裝置設計[J].湖南城市學院學報(自然科學版),2020,29(6):58-62.

[2] 李哲,李明.電力電子裝置高精度FFT方法對比分析[J].科學技術新,2020(30):43-44.

[3] 薑翟躍,徐浩南,巫樂(le) 文,張敬昊,江豪傑.FFT算法在電機保護係統中的應用分析

[4] 安科瑞企業(ye) 微電網設計與(yu) 應用手冊(ce) .2020.06版

 

作者簡介:侯文莉,女,安科瑞電氣股份有限公司,主要研究方向為(wei) 智能電網供配電


2025 版權所有 © 18luck新官网登录   sitemap.xml  技術支持:

地址:上海市嘉定區育綠路253號2幢4層 傳(chuan) 真: 郵件:540643891@qq.com

電瓶車充電樁、電動汽車充電樁禁止非法改裝!

關(guan) 注我們(men)

服務熱線

021-69153530

掃一掃,關(guan) 注我們(men)